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Geometric Formulas
Conversion Between Radians and Degrees: � radians = 180◦
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PREFACE

Calculus is one of the greatest achievements of the human intellect. Inspired by problems in astronomy,

Newton and Leibniz developed the ideas of calculus 300 years ago. Since then, each century has demonstrated

the power of calculus to illuminate questions in mathematics, the physical sciences, engineering, and the social

and biological sciences.

Calculus has been so successful both because its central theme—change—is pivotal to an analysis of the

natural world and because of its extraordinary power to reduce complicated problems to simple procedures.

Therein lies the danger in teaching calculus: it is possible to teach the subject as nothing but procedures—

thereby losing sight of both the mathematics and of its practical value. This edition of Calculus continues our

effort to promote courses in which understanding and computation reinforce each other. It reflects the input

of users at research universities, four-year colleges, community colleges, and secondary schools, as well as

of professionals in partner disciplines such as engineering and the natural and social sciences.

Mathematical Thinking Supported by Theory and Modeling
The first stage in the development of mathematical thinking is the acquisition of a clear intuitive picture of the

central ideas. In the next stage, the student learns to reason with the intuitive ideas in plain English. After this

foundation has been laid, there is a choice of direction. All students benefit from both theory and modeling,

but the balance may differ for different groups. Some students, such as mathematics majors, may prefer more

theory, while others may prefer more modeling. For instructors wishing to emphasize the connection between

calculus and other fields, the text includes:

• A variety of problems from the physical sciences and engineering.

• Examples from the biological sciences and economics.

• Models from the health sciences and of population growth.

• Problems on sustainability.

• Case studies on medicine by David E. Sloane, MD.

Active Learning: Good Problems
As instructors ourselves, we know that interactive classrooms and well-crafted problems promote student

learning. Since its inception, the hallmark of our text has been its innovative and engaging problems. These

problems probe student understanding in ways often taken for granted. Praised for their creativity and variety,

these problems have had influence far beyond the users of our textbook.

The Seventh Edition continues this tradition. Under our approach, which we call the “Rule of Four,” ideas

are presented graphically, numerically, symbolically, and verbally, thereby encouraging students to deepen

their understanding. Graphs and tables in this text are assumed to show all necessary information about the

functions they represent, including direction of change, local extrema, and discontinuities.

Problems in this text include:

• Strengthen Your Understanding problems at the end of every section. These problems ask students

to reflect on what they have learned by deciding “What is wrong?” with a statement and to “Give an

example” of an idea.

• ConcepTests promote active learning in the classroom. These can be used with or without personal re-

sponse systems (e.g., clickers), and have been shown to dramatically improve student learning. Available

in a book or on the web at www.wiley.com/college/hughes-hallett.

• Class Worksheets allow instructors to engage students in individual or group class-work. Samples are

available in the Instructor’s Manual, and all are on the web at www.wiley.com/college/hughes-hallett.

• Data and Models Many examples and problems throughout the text involve data-driven models. For

example, Section 11.7 has a series of problems studying the spread of the chikungunya virus that arrived

v
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in the US in 2013. Projects at the end of each chapter of the E-Text (at www.wiley.com/college/hughes-

hallett) provide opportunities for sustained investigation of real-world situations that can be modeled

using calculus.

• Drill Exercises build student skill and confidence.

Enhancing Learning Online

This Seventh Edition provides opportunities for students to experience the concepts of calculus in ways that

would not be possible in a traditional textbook. The E-Text of Calculus, powered by VitalSource, provides in-

teractive demonstrations of concepts, embedded videos that illustrate problem-solving techniques, and built-in

assessments that allow students to check their understanding as they read. The E-Text also contains additional

content not found in the print edition:

• Worked example videos by Donna Krawczyk at the University of Arizona, which provide students the

opportunity to see and hear hundreds of the book’s examples being explained and worked out in detail

• Embedded Interactive Explorations, applets that present and explore key ideas graphically and dynamically—

especially useful for display of three-dimensional graphs

• Material that reviews and extends the major ideas of each chapter: Chapter Summary, Review Exercises

and Problems, CAS Challenge Problems, and Projects

• Challenging problems that involve further exploration and application of the mathematics in many sec-

tions

• Section on the �, � definition of limit (1.10)

• Appendices that include preliminary ideas useful in this course

Problems Available in WileyPLUS

Students and instructors can access a wide variety of problems through WileyPLUS with ORION, Wiley’s

digital learning environment. ORION Learning provides an adaptive, personalized learning experience that

delivers easy-to-use analytics so instructors and students can see exactly where they’re excelling and where

they need help. WileyPLUS with ORION features the following resources:

• Online version of the text, featuring hyperlinks to referenced content, applets, videos, and supplements.

• Homework management tools, which enable the instructor to assign questions easily and grade them

automatically, using a rich set of options and controls.

• QuickStart pre-designed reading and homework assignments. Use them as-is or customize them to fit the

needs of your classroom.

• Intelligent Tutoring questions, in which students are prompted for responses as they step through a prob-

lem solution and receive targeted feedback based on those responses.

• Algebra & Trigonometry Refresher material, delivered through ORION, Wiley’s personalized, adaptive

learning environment that assesses students’ readiness and provides students with an opportunity to brush

up on material necessary to master Calculus, as well as to determine areas that require further review.

Online resources and support are also available through WebAssign. WebAssign for Hughes-Hallett Calculus

Seventh Edition contains a vast range of assignable and autogradable homework questions as well as an

Enhanced VitalSouce e-text with embedded videos, interatives, and questions.

Flexibility and Adaptability: Varied Approaches

The Seventh Edition of Calculus is designed to provide flexibility for instructors who have a range of prefer-

ences regarding inclusion of topics and applications and the use of computational technology. For those who

prefer the lean topic list of earlier editions, we have kept clear the main conceptual paths. For example,

• The Key Concept chapters on the derivative and the definite integral (Chapters 2 and 5) can be covered

at the outset of the course, right after Chapter 1.
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• Limits and continuity (Sections 1.7, 1.8, and 1.9) can be covered in depth before the introduction of the

derivative (Sections 2.1 and 2.2), or after.

• Approximating Functions Using Series (Chapter 10) can be covered before, or without, Chapter 9.

• In Chapter 4 (Using the Derivative), instructors can select freely from Sections 4.3–4.8.

• Chapter 8 (Using the Definite Integral) contains a wide range of applications. Instructors can select one

or two to do in detail.

To use calculus effectively, students need skill in both symbolic manipulation and the use of technology. The

balance between the two may vary, depending on the needs of the students and the wishes of the instructor.

The book is adaptable to many different combinations.

The book does not require any specific software or technology. It has been used with graphing calculators,

graphing software, and computer algebra systems. Any technology with the ability to graph functions and

perform numerical integration will suffice. Students are expected to use their own judgment to determine

where technology is useful.

Content

This content represents our vision of how calculus can be taught. It is flexible enough to accommodate indi-

vidual course needs and requirements. Topics can easily be added or deleted, or the order changed.

Changes to the text in the Seventh Edition are in italics. In all chapters, problems were added and others

were updated. In total, there are more than 900 new problems.

Chapter 1: A Library of Functions

This chapter introduces all the elementary functions to be used in the book. Although the functions are prob-

ably familiar, the graphical, numerical, verbal, and modeling approach to them may be new. We introduce

exponential functions at the earliest possible stage, since they are fundamental to the understanding of real-

world processes.

The content on limits and continuity in this chapter has been revised and expanded to emphasize the limit

as a central idea of calculus. Section 1.7 gives an intuitive introduction to the ideas of limit and continuity.

Section 1.8 introduces one-sided limits and limits at infinity and presents properties of limits of combinations

of functions, such as sums and products. The new Section 1.9 gives a variety of algebraic techniques for

computing limits, together with many new exercises and problems applying those techniques, and introduces

the Squeeze Theorem. The new online Section 1.10 contains the �, � definition of limit, previously in Section

1.8.

Chapter 2: Key Concept: The Derivative

The purpose of this chapter is to give the student a practical understanding of the definition of the deriva-

tive and its interpretation as an instantaneous rate of change. The power rule is introduced; other rules are

introduced in Chapter 3.

Chapter 3: Short-Cuts to Differentiation

The derivatives of all the functions in Chapter 1 are introduced, as well as the rules for differentiating products;

quotients; and composite, inverse, hyperbolic, and implicitly defined functions.

Chapter 4: Using the Derivative

The aim of this chapter is to enable the student to use the derivative in solving problems, including opti-

mization, graphing, rates, parametric equations, and indeterminate forms. It is not necessary to cover all the

sections in this chapter.
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Chapter 5: Key Concept: The Definite Integral

The purpose of this chapter is to give the student a practical understanding of the definite integral as a limit

of Riemann sums and to bring out the connection between the derivative and the definite integral in the

Fundamental Theorem of Calculus.

The difference between total distance traveled during a time interval is contrasted with the change in

position.

Chapter 6: Constructing Antiderivatives

This chapter focuses on going backward from a derivative to the original function, first graphically and nu-

merically, then analytically. It introduces the Second Fundamental Theorem of Calculus and the concept of a

differential equation.

Chapter 7: Integration

This chapter includes several techniques of integration, including substitution, parts, partial fractions, and

trigonometric substitutions; others are included in the table of integrals. There are discussions of numerical

methods and of improper integrals.

Chapter 8: Using the Definite Integral

This chapter emphasizes the idea of subdividing a quantity to produce Riemann sums which, in the limit,

yield a definite integral. It shows how the integral is used in geometry, physics, economics, and probability;

polar coordinates are introduced. It is not necessary to cover all the sections in this chapter.

Distance traveled along a parametrically defined curve during a time interval is contrasted with arc

length.

Chapter 9: Sequences and Series

This chapter focuses on sequences, series of constants, and convergence. It includes the integral, ratio, com-

parison, limit comparison, and alternating series tests. It also introduces geometric series and general power

series, including their intervals of convergence.

Rearrangement of the terms of a conditionally convergent series is discussed.

Chapter 10: Approximating Functions

This chapter introduces Taylor Series and Fourier Series using the idea of approximating functions by simpler

functions.

The term Maclaurin series is introduced for a Taylor series centered at 0. Term-by-term differentiation of

a Taylor series within its interval of convergence is introduced without proof. This term-by-term differentiation

allows us to show that a power series is its own Taylor series.

Chapter 11: Differential Equations

This chapter introduces differential equations. The emphasis is on qualitative solutions, modeling, and inter-

pretation.

Appendices

There are online appendices on roots, accuracy, and bounds; complex numbers; Newton’s method; and vectors

in the plane. The appendix on vectors can be covered at any time, but may be particularly useful in the

conjunction with Section 4.8 on parametric equations.
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Supplementary Materials and Additional Resources

Supplements for the instructor can be obtained online at the book companion site or by contacting your Wiley

representative. The following supplementary materials are available for this edition:

• Instructor’s Manual containing teaching tips, calculator programs, overhead transparency masters, sam-

ple worksheets, and sample syllabi.

• Computerized Test Bank, comprised of nearly 7,000 questions, mostly algorithmically-generated,which

allows for multiple versions of a single test or quiz.

• Instructor’s Solution Manual with complete solutions to all problems.

• Student Solution Manual with complete solutions to half the odd-numbered problems.

• Graphing Calculator Manual, to help students get the most out of their graphing calculators, and to

show how they can apply the numerical and graphing functions of their calculators to their study of

calculus.

• Additional Material, elaborating specially marked points in the text and password-protected electronic

versions of the instructor ancillaries, can be found on the web at www.wiley.com/college/hughes-hallett.

ConcepTests

ConcepTests, modeled on the pioneering work of Harvard physicist Eric Mazur, are questions designed to

promote active learning during class, particularly (but not exclusively) in large lectures. Our evaluation data

show students taught with ConcepTests outperformed students taught by traditional lecture methods 73%

versus 17% on conceptual questions, and 63% versus 54% on computational problems.

Advanced Placement (AP) Teacher’s Guide

The AP Guide, written by a team of experienced AP teachers, provides tips, multiple-choice questions, and

free-response questions that correlate to each chapter of the text. It also features a collection of labs designed

to complement the teaching of key AP Calculus concepts.

New material has been added to reflect recent changes in the learning objectives for AB and BC Calculus,

including extended coverage of limits, continuity, sequences, and series. Also new to this edition are grids that

align multiple choice and free-response questions to the College Board’s Enduring Understandings, Learning

Objectives, and Essential Knowledge.
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To Students: How to Learn from this Book

• This book may be different from other math textbooks that you have used, so it may be helpful to know about

some of the differences in advance. This book emphasizes at every stage the meaning (in practical, graphical

or numerical terms) of the symbols you are using. There is much less emphasis on “plug-and-chug” and using

formulas, and much more emphasis on the interpretation of these formulas than you may expect. You will often

be asked to explain your ideas in words or to explain an answer using graphs.

• The book contains the main ideas of calculus in plain English. Your success in using this book will depend on

your reading, questioning, and thinking hard about the ideas presented. Although you may not have done this

with other books, you should plan on reading the text in detail, not just the worked examples.

• There are very few examples in the text that are exactly like the homework problems. This means that you can’t

just look at a homework problem and search for a similar–looking “worked out” example. Success with the

homework will come by grappling with the ideas of calculus.

• Many of the problems that we have included in the book are open-ended. This means that there may be more

than one approach and more than one solution, depending on your analysis. Many times, solving a problem

relies on common-sense ideas that are not stated in the problem but which you will know from everyday life.

• Some problems in this book assume that you have access to a graphing calculator or computer. There are many

situations where you may not be able to find an exact solution to a problem, but you can use a calculator or

computer to get a reasonable approximation.

• This book attempts to give equal weight to four methods for describing functions: graphical (a picture), nu-

merical (a table of values), algebraic (a formula), and verbal. Sometimes you may find it easier to translate

a problem given in one form into another. The best idea is to be flexible about your approach: if one way of

looking at a problem doesn’t work, try another.

• Students using this book have found discussing these problems in small groups very helpful. There are a great

many problems which are not cut-and-dried; it can help to attack them with the other perspectives your col-
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leagues can provide. If group work is not feasible, see if your instructor can organize a discussion session in

which additional problems can be worked on.

• You are probably wondering what you’ll get from the book. The answer is, if you put in a solid effort, you will

get a real understanding of one of the most important accomplishments of the last millennium—calculus—as

well as a real sense of the power of mathematics in the age of technology.
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1.1 FUNCTIONS AND CHANGE

In mathematics, a function is used to represent the dependence of one quantity upon another.

Let’s look at an example. In 2015, Boston, Massachusetts, had the highest annual snowfall,

110.6 inches, since recording started in 1872. Table 1.1 shows one 14-day period in which the city

broke another record with a total of 64.4 inches.1

Table 1.1 Daily snowfall in inches for Boston, January 27 to February 9, 2015

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Snowfall 22.1 0.2 0 0.7 1.3 0 16.2 0 0 0.8 0 0.9 7.4 14.8

You may not have thought of something so unpredictable as daily snowfall as being a function,

but it is a function of day, because each day gives rise to one snowfall total. There is no formula

for the daily snowfall (otherwise we would not need a weather bureau), but nevertheless the daily

snowfall in Boston does satisfy the definition of a function: Each day, t, has a unique snowfall, S,

associated with it.

We define a function as follows:

A function is a rule that takes certain numbers as inputs and assigns to each a definite output

number. The set of all input numbers is called the domain of the function and the set of

resulting output numbers is called the range of the function.

The input is called the independent variable and the output is called the dependent variable. In

the snowfall example, the domain is the set of days {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} and the

range is the set of daily snowfalls {0, 0.2, 0.7, 0.8, 0.9, 1.3, 7.4, 14.8, 16.2, 22.1}. We call the function

f and write S = f (t). Notice that a function may have identical outputs for different inputs (Days 8

and 9, for example).

Some quantities, such as a day or date, are discrete, meaning they take only certain isolated

values (days must be integers). Other quantities, such as time, are continuous as they can be any

number. For a continuous variable, domains and ranges are often written using interval notation:

The set of numbers t such that a ≤ t ≤ b is called a closed interval and written [a, b].

The set of numbers t such that a < t < b is called an open interval and written (a, b).

The Rule of Four: Tables, Graphs, Formulas, and Words

Functions can be represented by tables, graphs, formulas, and descriptions in words. For example,

the function giving the daily snowfall in Boston can be represented by the graph in Figure 1.1, as

well as by Table 1.1.

2 4 6 8 10 12 14
0

5

10

15

20

25

day

snowfall (inches)

Figure 1.1: Boston snowfall, starting January 27, 2015

As another example of a function, consider the snowy tree cricket. Surprisingly enough, all such

crickets chirp at essentially the same rate if they are at the same temperature. That means that the

chirp rate is a function of temperature. In other words, if we know the temperature, we can determine

1http://w2.weather.gov/climate/xmacis.php?wfo=box. Accessed June 2015.
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C = 4T − 160

Figure 1.2: Cricket chirp rate versus temperature

the chirp rate. Even more surprisingly, the chirp rate, C , in chirps per minute, increases steadily with

the temperature, T , in degrees Fahrenheit, and can be computed by the formula

C = 4T − 160

to a fair level of accuracy. We write C = f (T ) to express the fact that we think of C as a function of

T and that we have named this function f . The graph of this function is in Figure 1.2.

Notice that the graph of C = f (T ) in Figure 1.2 is a solid line. This is because C = f (T ) is

a continuous function. Roughly speaking, a continuous function is one whose graph has no breaks,

jumps, or holes. This means that the independent variable must be continuous. (We give a more

precise definition of continuity of a function in Section 1.7.)

Examples of Domain and Range
If the domain of a function is not specified, we usually take it to be the largest possible set of real

numbers. For example, we usually think of the domain of the function f (x) = x2 as all real numbers.

However, the domain of the function g(x) = 1∕x is all real numbers except zero, since we cannot

divide by zero.

Sometimes we restrict the domain to be smaller than the largest possible set of real numbers.

For example, if the function f (x) = x2 is used to represent the area of a square of side x, we restrict

the domain to nonnegative values of x.

Example 1 The function C = f (T ) gives chirp rate as a function of temperature. We restrict this function to

temperatures for which the predicted chirp rate is positive, and up to the highest temperature ever

recorded at a weather station, 134◦F. What is the domain of this function f?

Solution If we consider the equation

C = 4T − 160

simply as a mathematical relationship between two variables C and T , any T value is possible.

However, if we think of it as a relationship between cricket chirps and temperature, then C cannot

be less than 0. Since C = 0 leads to 0 = 4T − 160, and so T = 40◦F, we see that T cannot be less

than 40◦F. (See Figure 1.2.) In addition, we are told that the function is not defined for temperatures

above 134◦. Thus, for the function C = f (T ) we have

Domain = All T values between 40◦F and 134◦F

= All T values with 40 ≤ T ≤ 134

= [40, 134].

Example 2 Find the range of the function f , given the domain from Example 1. In other words, find all possible

values of the chirp rate, C , in the equation C = f (T ).

Solution Again, if we consider C = 4T − 160 simply as a mathematical relationship, its range is all real C

values. However, when thinking of the meaning of C = f (T ) for crickets, we see that the function

predicts cricket chirps per minute between 0 (at T = 40◦F) and 376 (at T = 134◦F). Hence,

Range = All C values from 0 to 376

= All C values with 0 ≤ C ≤ 376

= [0, 376].
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In using the temperature to predict the chirp rate, we thought of the temperature as the indepen-

dent variable and the chirp rate as the dependent variable. However, we could do this backward, and

calculate the temperature from the chirp rate. From this point of view, the temperature is dependent

on the chirp rate. Thus, which variable is dependent and which is independent may depend on your

viewpoint.

Linear Functions

The chirp-rate function, C = f (T ), is an example of a linear function. A function is linear if its

slope, or rate of change, is the same at every point. The rate of change of a function that is not linear

may vary from point to point.

Olympic and World Records

During the early years of the Olympics, the height of the men’s winning pole vault increased approx-

imately 8 inches every four years. Table 1.2 shows that the height started at 130 inches in 1900, and

increased by the equivalent of 2 inches a year. So the height was a linear function of time from 1900

to 1912. If y is the winning height in inches and t is the number of years since 1900, we can write

y = f (t) = 130 + 2t.

Since y = f (t) increases with t, we say that f is an increasing function. The coefficient 2 tells us

the rate, in inches per year, at which the height increases.

Table 1.2 Men’s Olympic pole vault winning height (approximate)

Year 1900 1904 1908 1912

Height (inches) 130 138 146 154

This rate of increase is the slope of the line in Figure 1.3. The slope is given by the ratio

Slope =
Rise

Run
=

146 − 138

8 − 4
=

8

4
= 2 inches/year.

Calculating the slope (rise/run) using any other two points on the line gives the same value.

What about the constant 130? This represents the initial height in 1900, when t = 0. Geometri-

cally, 130 is the intercept on the vertical axis.

4 8 12

130

140

150

y (height in inches)

t (years since 1900)

✲✛
Run = 4

✻
❄

Rise= 8

y = 130 + 2t

Figure 1.3: Olympic pole vault records

You may wonder whether the linear trend continues beyond 1912. Not surprisingly, it does not

exactly. The formula y = 130+2t predicts that the height in the 2012 Olympics would be 354 inches

or 29 feet 6 inches, which is considerably higher than the actual value of 19 feet 7.05 inches. There

is clearly a danger in extrapolating too far from the given data. You should also observe that the data

in Table 1.2 is discrete, because it is given only at specific points (every four years). However, we

have treated the variable t as though it were continuous, because the function y = 130 + 2t makes
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sense for all values of t. The graph in Figure 1.3 is of the continuous function because it is a solid

line, rather than four separate points representing the years in which the Olympics were held.

As the pole vault heights have increased over the years, the time to run the mile has decreased.

If y is the world record time to run the mile, in seconds, and t is the number of years since 1900,

then records show that, approximately,

y = g(t) = 260 − 0.39t.

The 260 tells us that the world record was 260 seconds in 1900 (at t = 0). The slope, −0.39, tells

us that the world record decreased by about 0.39 seconds per year. We say that g is a decreasing

function.

Difference Quotients and Delta Notation

We use the symbol Δ (the Greek letter capital delta) to mean “change in,” so Δx means change in x

and Δy means change in y.

The slope of a linear function y = f (x) can be calculated from values of the function at two

points, given by x1 and x2, using the formula

m =
Rise

Run
=

Δy

Δx
=

f (x2) − f (x1)

x2 − x1
.

The quantity (f (x2) − f (x1))∕(x2 − x1) is called a difference quotient because it is the quotient of

two differences. (See Figure 1.4.) Since m = Δy∕Δx, the units of m are y-units over x-units.

x1 x2

y = f (x)

✲✛
Run= x2 − x1

✻

❄

Rise = f (x2) − f (x1)

x

y

(x2, f (x2))

(x1, f (x1))

Figure 1.4: Difference quotient =
f (x2) − f (x1)

x2 − x1

Families of Linear Functions

A linear function has the form

y = f (x) = b + mx.

Its graph is a line such that

• m is the slope, or rate of change of y with respect to x.

• b is the vertical intercept, or value of y when x is zero.

Notice that if the slope, m, is zero, we have y = b, a horizontal line.

To recognize that a table of x and y values comes from a linear function, y = b+mx, look for

differences in y-values that are constant for equally spaced x-values.

Formulas such as f (x) = b + mx, in which the constants m and b can take on various values,

give a family of functions. All the functions in a family share certain properties—in this case, all the
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graphs are straight lines. The constants m and b are called parameters; their meaning is shown in

Figures 1.5 and 1.6. Notice that the greater the magnitude of m, the steeper the line.

y = x
y = 2x

y = 0.5x

x

y

y = −x
y = −2x

y = −0.5x

Figure 1.5: The family y = mx

(with b = 0)

x

y = −1 + x

y = x

y = 1 + x

y = 2 + x

y

Figure 1.6: The family y = b + x

(with m = 1)

Increasing versus Decreasing Functions

The terms increasing and decreasing can be applied to other functions, not just linear ones. See

Figure 1.7. In general,

A function f is increasing if the values of f (x) increase as x increases.

A function f is decreasing if the values of f (x) decrease as x increases.

The graph of an increasing function climbs as we move from left to right.

The graph of a decreasing function falls as we move from left to right.

A function f (x) is monotonic if it increases for all x or decreases for all x.

Increasing Decreasing

Figure 1.7: Increasing and decreasing functions

Proportionality

A common functional relationship occurs when one quantity is proportional to another. For example,

the area, A, of a circle is proportional to the square of the radius, r, because

A = f (r) = �r2.

We say y is (directly) proportional to x if there is a nonzero constant k such

that

y = kx.

This k is called the constant of proportionality.

We also say that one quantity is inversely proportional to another if one is proportional to the

reciprocal of the other. For example, the speed, v, at which you make a 50-mile trip is inversely

proportional to the time, t, taken, because v is proportional to 1∕t:

v = 50
(

1

t

)

=
50

t
.
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Exercises and Problems for Section 1.1

EXERCISES

1. The population of a city, P , in millions, is a function of

t, the number of years since 2010, so P = f (t). Explain

the meaning of the statement f (5) = 7 in terms of the

population of this city.

2. The pollutant PCB (polychlorinated biphenyl) can af-

fect the thickness of pelican eggshells. Thinking of the

thickness, T , of the eggshells, in mm, as a function of

the concentration, P , of PCBs in ppm (parts per mil-

lion), we have T = f (P ). Explain the meaning of

f (200) in terms of thickness of pelican eggs and con-

centration of PCBs.

3. Describe what Figure 1.8 tells you about an assembly

line whose productivity is represented as a function of

the number of workers on the line.

productivity

number of workers

Figure 1.8

For Exercises 4–7, find an equation for the line that passes

through the given points.

4. (0, 0) and (1, 1) 5. (0, 2) and (2, 3)

6. (−2, 1) and (2, 3) 7. (−1, 0) and (2, 6)

For Exercises 8–11, determine the slope and the y-intercept

of the line whose equation is given.

8. 2y + 5x − 8 = 0 9. 7y + 12x − 2 = 0

10. −4y + 2x + 8 = 0 11. 12x = 6y + 4

12. Match the graphs in Figure 1.9 with the following equa-

tions. (Note that the x and y scales may be unequal.)

(a) y = x − 5 (b) −3x + 4 = y

(c) 5 = y (d) y = −4x − 5

(e) y = x + 6 (f) y = x∕2

x

y(I)

x

y(II)

x

y(III)

x

y(IV)

x

y(V)

x

y(VI)

Figure 1.9

13. Match the graphs in Figure 1.10 with the following

equations. (Note that the x and y scales may be un-

equal.)

(a) y = −2.72x (b) y = 0.01 + 0.001x

(c) y = 27.9 − 0.1x (d) y = 0.1x − 27.9

(e) y = −5.7 − 200x (f) y = x∕3.14

x

y(I)

x

y(II)

x

y(III)

x

y(IV)

x

y(V)

x

y(VI)

Figure 1.10

14. Estimate the slope and the equation of the line in Fig-

ure 1.11.

5 10

2

4

x

y

Figure 1.11

15. Find an equation for the line with slope m through the

point (a, c).

16. Find a linear function that generates the values in Ta-

ble 1.3.

Table 1.3

x 5.2 5.3 5.4 5.5 5.6

y 27.8 29.2 30.6 32.0 33.4

For Exercises 17–19, use the facts that parallel lines have

equal slopes and that the slopes of perpendicular lines are

negative reciprocals of one another.

17. Find an equation for the line through the point (2, 1)

which is perpendicular to the line y = 5x − 3.

18. Find equations for the lines through the point (1, 5) that

are parallel to and perpendicular to the line with equa-

tion y + 4x = 7.

19. Find equations for the lines through the point (a, b) that

are parallel and perpendicular to the line y = mx + c,

assuming m ≠ 0.
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For Exercises 20–23, give the approximate domain and

range of each function. Assume the entire graph is shown.

20.

1 3 5

1

3

5

y = f (x)

x

y 21.

1 3 5

2

4

6

y = f (x)

x

y

22.

−2 2

−2

2

y = f (x)

x

y 23.

1 3 5

1

3

5
y = f (x)

x

y

Find the domain and range in Exercises 24–25.

24. y = x2 + 2 25. y =
1

x2 + 2

26. If f (t) =
√

t2 − 16, find all values of t for which f (t)

is a real number. Solve f (t) = 3.

In Exercises 27–31, write a formula representing the func-

tion.

27. The volume of a sphere is proportional to the cube of

its radius, r.

28. The average velocity, v, for a trip over a fixed distance,

d, is inversely proportional to the time of travel, t.

29. The strength, S, of a beam is proportional to the square

of its thickness, ℎ.

30. The energy,E, expended by a swimming dolphin is pro-

portional to the cube of the speed, v, of the dolphin.

31. The number of animal species, N , of a certain body

length, l, is inversely proportional to the square of l.

PROBLEMS

32. In December 2010, the snowfall in Minneapolis was un-

usually high,2 leading to the collapse of the roof of the

Metrodome. Figure 1.12 gives the snowfall, S, in Min-

neapolis for December 6–15, 2010.

(a) How do you know that the snowfall data represents

a function of date?

(b) Estimate the snowfall on December 12.

(c) On which day was the snowfall more than 10

inches?

(d) During which consecutive two-day interval was the

increase in snowfall largest?

6 7 8 9 10 11 12 13 14 15

5

10

15

t (date)

S (inches)

Figure 1.12

33. The value of a car, V = f (a), in thousands of dollars,

is a function of the age of the car, a, in years.

(a) Interpret the statement f (5) = 6.

(b) Sketch a possible graph of V against a. Is f an in-

creasing or decreasing function? Explain.

(c) Explain the significance of the horizontal and ver-

tical intercepts in terms of the value of the car.

34. Which graph in Figure 1.13 best matches each of the

following stories?3 Write a story for the remaining

graph.

(a) I had just left home when I realized I had forgotten

my books, so I went back to pick them up.

(b) Things went fine until I had a flat tire.

(c) I started out calmly but sped up when I realized I

was going to be late.

distance
from home

time

(I) distance
from home

time

(II)

distance
from home

time

(III) distance
from home

time

(IV)

Figure 1.13

In Problems 35–38 the function S = f (t) gives the aver-

age annual sea level, S, in meters, in Aberdeen, Scotland,4

2http://www.crh.noaa.gov/mpx/Climate/DisplayRecords.php
3Adapted from Jan Terwel, “Real Math in Cooperative Groups in Secondary Education.” Cooperative Learning in Math-

ematics, ed. Neal Davidson, p. 234 (Reading: Addison Wesley, 1990).
4www.gov.uk, accessed January 7, 2015.
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as a function of t, the number of years before 2012. Write a

mathematical expression that represents the given statement.

35. In 2000 the average annual sea level in Aberdeen was

7.049 meters.

36. The average annual sea level in Aberdeen in 2012.

37. The average annual sea level in Aberdeen was the same

in 1949 and 2000.

38. The average annual sea level in Aberdeen decreased by

8 millimeters from 2011 to 2012.

Problems 39–42 ask you to plot graphs based on the follow-

ing story: “As I drove down the highway this morning, at first

traffic was fast and uncongested, then it crept nearly bumper-

to-bumper until we passed an accident, after which traffic

flow went back to normal until I exited.”

39. Driving speed against time on the highway

40. Distance driven against time on the highway

41. Distance from my exit vs time on the highway

42. Distance between cars vs distance driven on the high-

way

43. An object is put outside on a cold day at time t = 0. Its

temperature,H = f (t), in ◦C, is graphed in Figure 1.14.

(a) What does the statement f (30) = 10mean in terms

of temperature? Include units for 30 and for 10 in

your answer.

(b) Explain what the vertical intercept, a, and the hor-

izontal intercept, b, represent in terms of tempera-

ture of the object and time outside.

b

a

t (min)

H (◦C)

Figure 1.14

44. A rock is dropped from a window and falls to the ground

below. The height, s (in meters), of the rock above

ground is a function of the time, t (in seconds), since

the rock was dropped, so s = f (t).

(a) Sketch a possible graph of s as a function of t.

(b) Explain what the statement f (7) = 12 tells us

about the rock’s fall.

(c) The graph drawn as the answer for part (a) should

have a horizontal and vertical intercept. Interpret

each intercept in terms of the rock’s fall.

45. You drive at a constant speed from Chicago to Detroit,

a distance of 275 miles. About 120 miles from Chicago

you pass through Kalamazoo, Michigan. Sketch a graph

of your distance from Kalamazoo as a function of time.

46. US imports of crude oil and petroleum have been in-

creasing.5 There have been many ups and downs, but

the general trend is shown by the line in Figure 1.15.

(a) Find the slope of the line. Include its units of mea-

surement.

(b) Write an equation for the line. Define your vari-

ables, including their units.

(c) Assuming the trend continues, when does the lin-

ear model predict imports will reach 18 million

barrels per day? Do you think this is a reliable pre-

diction? Give reasons.

1992 1996 2000 2004 2008
4

5

6

7

8

9

10

11

12

13

14

year

US oil imports
(million barrels per day)

Figure 1.15

Problems 47–49 use Figure 1.16 showing how the quantity,

Q, of grass (kg/hectare) in different parts of Namibia de-

pended on the average annual rainfall, r, (mm), in two dif-

ferent years.6

100 200 300 400 500 600

1000

2000

3000

4000

5000

6000
1939

1997

rainfall (mm)

quantity of grass (kg/hectare)

Figure 1.16

47. (a) For 1939, find the slope of the line, including units.

(b) Interpret the slope in this context.

(c) Find the equation of the line.

48. (a) For 1997, find the slope of the line, including units.

(b) Interpret the slope in this context.

(c) Find the equation of the line.

49. Which of the two functions in Figure 1.16 has the

larger difference quotient ΔQ∕Δr? What does this tell

us about grass in Namibia?

5http://www.theoildrum.com/node/2767. Accessed May 2015.
6David Ward and Ben T. Ngairorue, “Are Namibia’s Grasslands Desertifying?”, Journal of Range Management 53, 2000,

138–144.




